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We investigate the dynamics of a generalized survival probabilitySst ,Rd defined with respect to an arbitrary
reference levelR (rather than the average) in equilibrium step fluctuations. The exponential decay at large time
scales of the generalized survival probability is numerically analyzed.Sst ,Rd is shown to exhibit simple scaling
behavior as a function of system sizeL, sampling timedt, and the reference levelR. The generalized survival
time scaletssRd associated withSst ,Rd is shown to decay exponentially as a function ofR.
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Controlling the stability of nanostructures is an important
fundamental issue in nanoscience. A key problem in this re-
spect is the random stochastic interface dynamics associated
with equilibrium nanometer scale thermal fluctuations un-
avoidably present in all nanosystems. Very interesting ques-
tions [1–5] have recently been addressed regarding the com-
plex dynamics of fluctuating interfaces in the context of first-
passage statistics, which seems to be the appropriate
framework in investigating the time it takes for a nanodevice
to first fluctuate into an unstable state. It turns out that useful
dynamical quantities such as persistence probabilityPstd
[1,2,4] (i.e., the probability that a stochastic variable does not
return to its initial value over timet) and survival probability
Sstd [2,5] (i.e., the probability that a stochastic variable does
not cross its average level up to timet) can be numerically
and experimentally investigated for interfaces with dynamics
governed by various kinetic mechanisms(such as high-
temperature attachment/detachment of atoms at the step edge
or low-temperature step edge diffusion of atoms) to gain in-
sight into the stability issue.

Much work has been devoted[6,7] over the last decade in
understanding equilibrium fluctuations on vicinal surfaces,
mostly using the dynamic scaling approach. Ifhsx,td is the
dynamical height(with respect to the chosen reference posi-
tion which is defined to be the average position, i.e., theh
=0 line) fluctuation of a thermally fluctuating step as a func-
tion of the lateral positionx and time t (where t is also
measured from an arbitrary time origin), then hstd at each
value of x is a stochastic dynamical variable by virtue of
equilibrium thermal fluctuations. Because of the spatially ex-
tended nature of the step fluctuations through its dependence
on bothx and t, the problem is non-Markovian, and persis-
tence [8] and survival[5] concepts should be particularly
relevant statistical tools in understanding the complex prob-
lem of surface fluctuations.

In this paper we introduce the concept of a generalized
survival probability which enables us to probe deeper into
the nature of the stochastic process of interface step fluctua-
tions. The generalized survival probability is the probability
Sst ,Rd that a given lateral step positionx with a height(i.e.,
step fluctuation measured from the equilibrium step position)
hsx,td at time t never does cross a preassigned reference

level of the heightR throughout the entire evolution. The
particular case withR=0 [i.e., the probability of the dynami-
cal step height not returning in timet to its average(“equi-
librium” ) R=0 level] has been studied recently[5] both ana-
lytically and experimentally, and it has been shown to exhibit
an exponential decay at large times,Sstd~exps−t /tsd, where
ts is the survival time scale that provides information about
the underlying kinetics. The resulting surface step fluctuation
survival probabilitySstd=Sst ,R=0d and the associated time
scalets have also recently been studied experimentally using
dynamical scanning tunneling microscopy(STM) on differ-
ent metallic systems: Al steps on Sis111d surface at high
temperatures, and Ag and Pbs111d surfaces at relatively low
temperatures[9]. In this paper we show numerically that
Sst ,Rd also has an exponential behavior at large time,
Sst ,Rd~exps−t /tssRdd, where tssRd is the generalized sur-
vival time scale. Our study reveals the dependence oftssRd
on the system sizeL, sampling intervaldt, and reference
level positionR, allowing us to establish the complete scal-
ing form of Sst ,Rd. In particular, the sampling interval(i.e.,
the time between successive measurements) [10] turns out to
be an essential ingredient inherent in any real experimental
measurement procedure. Also the study of the dependence of
the generalized survival time scale on the choice of the ref-
erence levelR, which turns out to be exponential, should
have particular importance for understanding the effect of
thermal fluctuations at the nanoscale.

In this study we consider the case of the high-temperature
step fluctuations dominated by atomistic attachment and de-
tachment(AD), where the step edge is known[6] to be well
described by the coarse-grained second-order nonconserved
linear Langevin equation, also known as the Edwards–
Wilkinson (EW) equation[11]

] hsx,td
] t

= ¹2hsx,td + h sx,td, s1d

where¹2 refers to the spatial derivativeswith respect tox,
the lateral position along the stepd, h sx,td with
kh sx,tdh sx8 ,t8dl=2Dd sx−x8dd st− t8d is the usual uncorre-
lated random Gaussian noise corresponding to the noncon-
served white noise associated with the random AD process,

PHYSICAL REVIEW E 69, 052601(2004)

1539-3755/2004/69(5)/052601(4)/$22.50 ©2004 The American Physical Society69 052601-1



andD is the noise strength. The AD process, thought to be
extremely important for relatively high-temperature step
fluctuations, has been extensively studied in the literature
using the EW equationf7g.

For equilibrium step fluctuations, we define the general-
ized survival probability with respect to the height reference
level R, Sst ,Rd, as the probability for the height variable to
remain consistentlyabovea certain preassigned value “R”
over timet:

Sst,Rd ; Probhhsx,t8d . R, ∀ t0 ø t8 ø t0 + tj, s2d

where hsx,td is the dynamical height of the interface at a
fixed lateral positionx at time t, and t0 is the initial time of
the measurement. Although the above definition involves the
dynamical variablehsx,td defined for a particular lateral po-
sition x, we take a statistical ensemble average over all lat-
eral positions to obtain a purely time dependent stochastic
dynamical quantitySst ,Rd. Obviously, another quantity that
can be measured is the probability for the height stochastic
variable to remainbelow the reference level up to timet.
Since in our case the dynamics of the interface fluctuations
obeys a linear stochastic equation, the interface preserves the
up-down symmetry along the direction perpendicular to the
step edge. As a consequence, in what follows we consider
the average of the probabilities of remaining always aboveR
and below −R, with Rù0.

The generalized survival probability function,Sst ,Rd, de-
fined in Eq. (2) above, leads to a hierarchy of generalized
survival time scales,tssRd, if the steady-state decay ofSst ,Rd
in time follows an exponential trend,Sst ,Rd,e−t/tssRd. As we
show below, this indeed is obtained for Edwards–Wilkinson
equilibrium step fluctuation phenomena, allowing us to de-
fine and measure the nontrivial survival time scaletssRd ,0
øRøRmax, that varies betweentssR=0d andtssRmaxd, where
tssR=0d is the usual survival time scale andtssRmaxd is the
survival time with respect to the highest reference levelRmax
that can be defined for a model with finite roughness(i.e.,
rms fluctuations of the height variable with respect to the
average). Rmax is limited by the maximum value of the height
fluctuation amplitude. Obviously,Sst ,Rd andtssRd are natu-
ral generalizations of the survival probabilitySstd and the
survival time scalets, respectively, to the more complex con-
cept of distribution of generalized survival times with limit-
ing behavior(i.e. R=0) providing the usual survival time.

The exponential decay at large time ofSst ,Rd that we find
numerically is not surprising. The generalized survival prob-
ability with respect to the reference levelR can be regarded
as the probabilityZstd of no zero crossing of the new sto-
chastic variableHsx,td=hsx,td−R. What we are looking for
is the probability for the stochastic variableHsx,td to remain
positive up to timet [or, equivalently, the probability for
Hsx,td+R to remain negative over timet]. This type of ques-
tion for the Gaussian stationary processes with zero mean
has been addressed by mathematicians for a long time[12].
The no zero crossing probability is traditionally investigated
in conjunction with the autocorrelation function,CH
;kHsx,t1dHsx,t2dl [where k. . .l represents an average over
all realizations ofHsx,td arising from the thermal noise

source]. It is known [13] that for a stationary Gaussian pro-
cess[i.e.,CH= fsut1− t2u d; fstd] with an autocorrelation func-
tion decaying faster than 1/t at larget, the asymptotic behav-
ior of the no zero crossing probability is exponential,Zstd
~exps−mtd. The autocorrelation functionCHstd itself has
been shown[5] to be stationary at late times and to decay
exponentially. This, along with the exponential decay ofZstd,
ensures an exponential decay forSst ,Rd.

In order to numerically simulate the process described by
Eq. (1), we have used discrete stochastic Monte Carlo simu-
lations of the corresponding atomistic solid-on-solid model,
the extensively studied Family model[6], which belongs
asymptotically to the Edwards-Wilkinson universality class
[1]. The Family model ins1+1d-dimensions(i.e., one spatial
variable and one temporal variable) is characterized byb
=1/4, a=1/2, andz=a /b=2 [6], where the growth expo-
nentb is the rate of change of interface width(or roughness)
in the transient regimefwstd, tbg, the roughness exponenta
shows the saturation of the width for a system with fixed size
L in the steady state regimefwsLd,Lag andz is the dynami-
cal exponent. This model involves the traditional random
deposition(at a rate of one complete monolayer during one
unit of time) and surface relaxation such that the adatoms are
searching for the sites with the minimum local height. We
have taken the relaxation length to be the lattice constant and
we have applied the usual periodic boundary conditions.
Typical sizes(i.e., number of lattice sites) used in this nu-
merical work are 100–900, and the averaging procedure im-
plies a number of at least 105 independent runs. All the mea-
surements correspond to the steady state regime where the
interface roughness has reached a time-independent equilib-
rium value[i.e., t0@Lz in Eq. (2)]. We also mention that the
smallest value for the sampling time is 1. We emphasize that
our use of Family model is just a matter of convenience in
simulating the EW equation[6]; our results are simply an
exact discrete stochastic simulation of the EW equation.

Our results for the generalized survival probability and
the associated time scale are presented in Figs. 1 and 2.
Sst ,Rd is simply computed as the fraction of sites which,
starting above(below) the levelR s−Rd at time t0, have not
crossed the reference level up to a later timet0+ t. In Fig. 1
we show that, as expected, the generalized survival with re-
spect to an arbitrary reference levelR follows an exponential
decay at large times. The only varying parameter in Fig. 1 is
the reference levelR. We have considered six values forR,
R=0,1, . . . ,5[only the first four curves are displayed due to
the limitations imposed by the quality of the statistics, since
asR increases it is less probable to have a reasonable number
of lattice sites with height variables above(below) R s−Rd].
The dashed lines are fits of the long-time data to an expo-
nential form, Sst ,Rd~exp(−t /tssRd). The upper curve has
R=0 and corresponds to the usual survival probability previ-
ously studied in Ref.[5]. However, all the other curves are
new and they prove that the generalized survival probability
decays exponentially in the long-time limit, with an associ-
ated time scaletssRd, which decreases with the reference
level value. As shown in the inset of Fig. 1, the dependence
of tssRd on R is exponential, but clearly more work is needed
in order to understand this trend.

BRIEF REPORTS PHYSICAL REVIEW E69, 052601(2004)

052601-2



In Fig. 2 we have used several lattice sizes, sampling
times and reference levels in order to identify the scaling
behavior ofSst ,Rd. In panel (a) we show the generalized
survival with respect to levelR=1, measured usingdt=1, for
two system sizes:L=100 andL=200. We observe that the
underlying survival time scale increases rapidly withL. In
fact,tssRd for a fixedR is expected to grow proportionally to
Lz [5]. However, we obtain thattssR=1d.103 for L=100,
andtssR=1d.429 for L=200, so the measured generalized
survival time exhibits a small deviation from the expected
value of 10334=412. We find that this small effect is due to
the dependence of the generalized survival on sampling time
dt. This is clearly seen in panel(b). It turns out that a system
with a fixed sizesL=200d is characterized by different values
of tssRd if the sampling time of the measurement is adjusted.
We observe thattssRd increases weakly as the sampling time
is increased. One might argue that this effect is very small
and could be neglected, but we have found that the effect of
the sampling time on the measured generalized survival
probability has to be taken into account in order to find the
complete scaling function ofSst ,Rd. In addition, this effect is
even stronger for systems with slower dynamics(i.e., larger
z) [5]. Interestingly enough, we note that fixing the reference
height level in the generalized survival probability problem
introduces an additional length scale, that is related to the
steady state value of the interface width, i.e.La. Indeed, in
panel (c) we look at three different systems withL=200,
400, and 900, respectively, and the generalized survival
curves are calculated forR=1, 2 and 3, respectively, i.e., the
level R is varied proportionally toLa, with a=1/2 asappro-
priate for the EW equation. In addition, the sampling time for
each of these three cases is also varied,dt~Lz sz=2d, so we
have considereddt=1 for L=100, dt=16 for L=400, and
dt=81 for L=900, respectively. A perfect collapse of the
curves Sst ,Rd vs t /Lz occurs when usingz=2.03, which
agrees with the expected valuez=2, characteristic for the
EW dynamics.

This numerical analysis allows us to conclude that the
scaling form of the generalized survival probability is

Sst,L,R,dtd = fst/Lz,R/La,dt/Lzd, s3d

where the functionfsx,y,zd decays exponentially for large
values ofx. The rate of this decay decreases rather rapidly as
y is decreased and increases rather slowly asz is decreased.
Note that fory=0 we recover the scaling form of the usual
survival probability withR=0 f5g.

To conclude, we have shown that the generalized survival
probability of equilibrium step fluctuations on vicinal sur-

FIG. 1. The generalized survival probability,Sst ,Rd, for the dis-
crete Family model. The dashed lines are fits of the long-time data
to an exponential form. The system size isL=100, the sampling
time isdt=1.0 and the reference levelR takes four different values:
0, 1, 2, and 3(from top to bottom). The inset shows the dependence
of the generalized survival time scaletssRd on the reference level
value (up to R=5). The continuous curve represents a fit to an
exponential decay of the generalized time scale vs.R.

FIG. 2. The generalized survival probabilitySst ,Rd for the Fam-
ily model. The dashed lines are fits of the long-time data to an
exponential form. Panel(a): L=100 (lower curve) andL=200 (up-
per curve), using fixed sampling timedt=1 and reference levelR
=1. Panel(b): dt=1 (lower plot) anddt=16 (upper plot) with fixed
system sizeL=200 and reference level positionR=1. Panel(c):
Scaling ofSst ,Rd using three different system sizes with sampling
times and reference levels varied such thatdt /Lz andR/La are kept
constant[i.e., dt /Lz=1/10 000 andR/La=1/Î100]. A perfect col-
lapse of the curves with L=100, 400, and 900, respectively, occurs
when usingz=2.03.
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faces with Edwards-Wilkinson dynamics decays exponen-
tially at long times. We have investigated the associated gen-
eralized survival time scale that depends on the system size
L, sampling timedt, and the choice of the reference levelR.
In particular, the dependence oftssRd on R, which based on
our preliminary investigations seems to have an exponential
trend, should be useful in understanding the stability of ther-
mally fluctuating interfaces. We have also shown that the
generalized survival probability exhibits simple scaling as a
function ofL, dt, andR. Our numerical results onSst ,Rd can
be easily extended to fluctuating interfaces characterized by
different dynamical evolutions(such as low-temperature step
edge diffusion limited kinetics) belonging to different univer-
sality classes. Our goal here, using the example of the step
fluctuations process characterized by the EW universality

class, is to establish the generalized survival probability as
an important statistical concept in studying thermally fluctu-
ating interfaces.

Finally, we mention that the generalized survival prob-
ability could be experimentally measured using dynamical
STM step fluctuations data, opening the possibility for a di-
rect approach to the crucial issue of interfacial stability. Our
theoretical considerations forSst ,Rd should also be useful in
understanding the dynamical evolution of other physical pro-
cesses[14] where first-passage statistics have proven to be a
useful concept.
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