PHYSICAL REVIEW E 69, 052601(2004)

Generalized survival in equilibrium step fluctuations
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We investigate the dynamics of a generalized survival probal8iityR) defined with respect to an arbitrary
reference leveR (rather than the averagm equilibrium step fluctuations. The exponential decay at large time
scales of the generalized survival probability is numerically analy@@dR) is shown to exhibit simple scaling
behavior as a function of system sizesampling timest, and the reference lev&®. The generalized survival
time scalery(R) associated witl§(t,R) is shown to decay exponentially as a functionFof
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Controlling the stability of nanostructures is an importantlevel of the heightR throughout the entire evolution. The
fundamental issue in nanoscience. A key problem in this reparticular case witlkR=0 [i.e., the probability of the dynami-
spect is the random stochastic interface dynamics associategl step height not returning in tinteto its average“equi-
with equilibrium nanometer scale thermal fluctuations un-ibrium”) R=0 level has been studied recen{l§] both ana-
avoidably present in all nanosystems. Very interesting quedytically and experimentally, and it has been shown to exhibit
tions[1-5] have recently been addressed regarding the coman exponential decay at large tim&#t) «< exp(—t/ 7)), where
plex dynamics of fluctuating interfaces in the context of first- ~_is the survival time scale that provides information about
passage statistics, which seems to be the appropriatfe underlying kinetics. The resulting surface step fluctuation
framework in investigating the time it takes for a nanodevicesyryival probabilityS(t)=S(t,R=0) and the associated time
to first fluctuate into an unstable state. It turns out that usefutcaler, have also recently been studied experimentally using
dynamical quantities such as persistence probabHity)  gynamical scanning tunneling microsco@TM) on differ-
[1,2,4 (i.e., the probability that a stochastic variable does noknt metallic systems: Al steps on 8i11) surface at high
return to its initial value over timé and survival probability temperatures, and Ag and Pbl1) surfaces at relatively low
S(t) [2,5] (i.e., the probability that a stochastic variable doestemperatures[9]. In this paper we show numerically that
not cross its average level up to timecan be numerically gt R) also has an exponential behavior at large time,
and experimentally investigated for interfaces with dynamicsgt R) « exp(-t/ 7(R)), where 7(R) is the generalized sur-

governed by various kinetic mechanisnmsuch as high- ;4| time scale. Our study reveals the dependence,(®)
temperature attachment/detachment of atoms at the step edgﬁ the system sizé, sampling interval®t, and reference

or low-temperature step edge diffusion of atgrtesgain in-
sight into the stability issue.

Much work has been devotg8,7] over the last decade in
understanding equilibrium fluctuations on vicinal surfaces
mostly using the dynamic scaling approachh(k,t) is the

level positionR, allowing us to establish the complete scal-
ing form of S(t,R). In particular, the sampling intervéi.e.,

the time between successive measurem¢mn@§ turns out to

be an essential ingredient inherent in any real experimental

d ical heiahtwith he ch ¢ . measurement procedure. Also the study of the dependence of
ynamical heightwith respect to the chosen reference posi-yq generalized survival time scale on the choice of the ref-

tion which is defined to be the average position, i.e.,the o onca leveR, which turns out to be exponential, should

=0 line) fluctuation of a thermally fluctuating step as a func- have particular importance for understanding the effect of

tion of the lateral posi_tionx a_nd tim_ej[ (wheret is also thermal fluctuations at the nanoscale.

measured from an arbitrary time origirthen h(t) at each In this study we consider the case of the high-temperature

value ofx is a stochastic dynamical variable by virtue of giop fiyctuations dominated by atomistic attachment and de-

equilibrium thermal fluctuations. Because of the spatially &XtachmentAD), where the step edge is kno#] to be well

tended nature of the step fluctuations through its dependenggscriped by the coarse-grained second-order nonconserved

on bothx andt, the problem is non-Markovian, and persis- |inear Langevin equation, also known as the Edwards—

tence[8] and survival[5] concepts should be particularly \nikinson (EW) equation[11]

relevant statistical tools in understanding the complex prob-

lem of surface fluctuations. ah(x,t)
In this paper we introduce the concept of a generalized ot

survival probability which enables us to probe deeper into

the nature of the stochastic process of interface step fluctuathere V2 refers to the spatial derivativievith respect tox,

tions. The generalized survival probability is the probabilitythe lateral position along the step 7(x,t) with

S(t,R) that a given lateral step positionwith a height(i.e., (7 (X, ) (X",t")}=2D5 (x=x') & (t-t’) is the usual uncorre-

step fluctuation measured from the equilibrium step positionlated random Gaussian noise corresponding to the noncon-

h(x,t) at timet never does cross a preassigned referenceerved white noise associated with the random AD process,

=V?h(x,t) + 7 (x,1), (1)
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andD is the noise strength. The AD process, thought to besourcé. It is known[13] that for a stationary Gaussian pro-
extremely important for relatively high-temperature stepcessi.e., Cy=f(|t;—t,|)=f(t)] with an autocorrelation func-

fluctuations, has been extensively studied in the literaturd¢ion decaying faster than L&t larget, the asymptotic behav-

using the EW equatiofi7]. ior of the no zero crossing probability is exponentia(t)

For equilibrium step fluctuations, we define the general=<exp(-ut). The autocorrelation functiorCy(t) itself has
ized survival probability with respect to the height referencebeen showr{5] to be stationary at late times and to decay
level R, S(t,R), as the probability for the height variable to exponentially. This, along with the exponential decay@j,
remain consistentlyabovea certain preassigned valu®*  ensures an exponential decay &t,R).
over timet: In order to numerically simulate the process described by

Eqg. (1), we have used discrete stochastic Monte Carlo simu-
St,R) =Prolh(x,t’) >R, Oty<t'<ty+t}, (2) lations of the corresponding atomistic solid-on-solid model,

. . . . the extensively studied Family modgb], which belongs
where h(x,t) is the dynamical height of the interface at a asymptotically to the Edwards-Wilkinson universality class

the megsurement. Athough the above defnion involves thiL: T Family model (L +1)-dimensiongi., one spatl
) g variable and one temporal variapless characterized by3

dynamical variablén(x,t) defined for a particular lateral po- ~1/4, a=1/2, andz=al =2 [6], where the growth expo-
sition x, we take a statistical ensemble average over all Iat'nent,é is the r:ate of change of in'terface widtbr roughness
eral pqsitions to.obtain a pur_ely time dependent s_tochastiﬁ1 the transient regimBw(t) ~ t#], the roughness exponeat
g;:atglcggggsgg)iss(t ﬂ?; ;gt\)/élobl:l?tlil/, fg:]?r:ge;g;ﬁ?ts'%éﬂggtiﬁhows the saturation of the width for a system with fixed size
variable to remairbelow the reference level up to time in the steady state reginfa(L) ~L“] andz s the dynami-

Since in our case the dynamics of the interface fluctuation cal exponent. This model involves the traditional random
y eposition(at a rate of one complete monolayer during one

obeys a linear stochastic equation, t_he interface Preserves tu%it of time) and surface relaxation such that the adatoms are
up-down symmetry along the direction perpendicular to the

step edae. As a consequence. in what follows we consid searching for the sites with the minimum local height. We
p edge. quence, - Have taken the relaxation length to be the lattice constant and
the average of the probabilities of remaining always atieve

and below R, with R=0. we have applied the usual periodic boundary conditions.

. ; o io8( _ Typical sizes(i.e., number of lattice sitgsused in this nu-
. The_ generalized survival probabllrty functio§(t, R), de. merical work are 100—900, and the averaging procedure im-
fined in Eq.(2) above, leads to a hierarchy of generalized

. : ! plies a number of at least 1thdependent runs. All the mea-
§ur_vwal time scalesz(R), f t_he steady-state (_Jlt/ec%y §it.R) surements correspond to the steady state regime where the
in time follows an exponential trend(t,R) ~ e V=R As we

o i ) o interface roughness has reached a time-independent equilib-
show below, this indeed is obtained for Edwards—Wilkinson;m valueli.e., t,>LZ in Eq. (2)]. We also mention that the

equilibrium step fluctuation phenomena, allowing us to de-gmgjlest value for the sampling time is 1. We emphasize that
fine and measure the nontrivial survival time scal’),0 ¢ yse of Family model is just a matter of convenience in

<R=Rpa, that varies between(R=0) and 7s(Rma), Where  gimylating the EW equatiofi6]; our results are simply an
7(R=0) is the usual survival time scale andRnay) is the  exact discrete stochastic simulation of the EW equation.
survival time with respect to the highest reference ld¥gl, Our results for the generalized survival probability and
that can be defined for a model with finite roughnéiss.,  the associated time scale are presented in Figs. 1 and 2.
rms fluctuations of the height variable with respect to thegt,R) is simply computed as the fraction of sites which,
averag® Ryaxis limited by the maximum value of the height starting abovabelow) the levelR (-R) at timet,, have not
fluctuation amplitude. Obvioush&(t,R) and 7(R) are natu-  rossed the reference level up to a later tiget. In Fig. 1
ral generalizations of the survival probabili§(t) and the e show that, as expected, the generalized survival with re-
survival time scaler, respectively, to the more complex con- spect to an arbitrary reference lewefollows an exponential
Cept of distribution of generalized survival times with limit- decay at |arge times. The 0n|y Varying parameter in F|g 1is
ing behavior(i.e. R=0) providing the usual survival time.  the reference leveR. We have considered six values far

The exponential decay at large time&f,R) thatwe find  R=0,1, ..., 5[only the first four curves are displayed due to
numerically is not surprising. The generalized survival prob-the limitations imposed by the quality of the statistics, since
ability with respect to the reference leveican be regarded asRincreases it is less probable to have a reasonable number
as the probabilityZ(t) of no zero crossing of the new sto- of |attice sites with height variables abogelow) R (-R)].
chastic variableH(x,t)=h(x,t) -R. What we are looking for The dashed lines are fits of the long-time data to an expo-
is the probability for the stochastic varialdtéx,t) to remain  nential form, S(t,R)=exp(-t/7{(R)). The upper curve has
positive up to timet [or, equivalently, the probability for R=0 and corresponds to the usual survival probability previ-
H(x,t)+R to remain negative over timg. This type of ques- ously studied in Ref[5]. However, all the other curves are
tion for the Gaussian stationary processes with zero meanew and they prove that the generalized survival probability
has been addressed by mathematicians for a long[tli®le  decays exponentially in the long-time limit, with an associ-
The no zero crossing probability is traditionally investigatedated time scalers(R), which decreases with the reference
inconjunction with the autocorrelation functionCy  level value. As shown in the inset of Fig. 1, the dependence
=(H(x,t)H(x,t,)) [where(...) represents an average over of 7(R) on R is exponential, but clearly more work is needed
all realizations ofH(x,t) arising from the thermal noise in order to understand this trend.
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FIG. 1. The generalized survival probabili§t, R), for the dis-
crete Family model. The dashed lines are fits of the long-time data
to an exponential form. The system sizelis 100, the sampling
time is 6t=1.0 and the reference levRltakes four different values:

0, 1, 2, and 3from top to botton. The inset shows the dependence
of the generalized survival time scatg(R) on the reference level
value (up to R=5). The continuous curve represents a fit to an
exponential decay of the generalized time scaleRvs.

S(t, R)

(=]
=]

In Fig. 2 we have used several lattice sizes, sampling 0 1000 2000 3000 40
times and reference levels in order to identify the scaling
behavior of §(t,R). In panel(a) we show the generalized 10
survival with respect to levéR=1, measured using=1, for
two system sizest =100 andL=200. We observe that the
underlying survival time scale increases rapidly within
fact, 7(R) for a fixedR is expected to grow proportionally to
L? [5]. However, we obtain thaty(R=1)=103 for L=100, 10?
and 7{(R=1)=429 for L=200, so the measured generalized
survival time exhibits a small deviation from the expected R
value of 103x 4=412. We find that this small effect is due to 10 . | o c) . | . |
the dependence of the generalized survival on sampling time 0.01 0.02 0.03 0.04
8. This is clearly seen in panéb). It turns out that a system /(L2
with a fi)_(ed size(L=_200) _is characterized by diﬁerem V".’"”es FIG. 2. The generalized survival probabil®t, R) for the Fam-
of 7(R) if the samplm_g time of the measurement is ?d]ustedily model. The dashed lines are fits of the long-time data to an
We observe that(R) increases weakly as the sampling time gxponential form. Pangk): L=100 (lower curve andL=200 (up-
is increased. One might argue that this effect is very smalber curve, using fixed sampling timét=1 and reference leve®
and could be neglected, but we have found that the effect af1. paneib): st=1 (lower plot) and &t=16 (upper plof with fixed
the sampling time on the measured generalized survivalystem sizeL =200 and reference level positidR=1. Panel(c):
probability has to be taken into account in order to find theScaling ofS(t,R) using three different system sizes with sampling
complete scaling function &(t,R). In addition, this effectis times and reference levels varied such #tdt> andR/L* are kept
even stronger for systems with slower dynanics., larger ~ constantfi.e., §t/L?=1/10 000 andR/L*=1/y100). A perfect col-

2) [5]. Interestingly enough, we note that fixing the referenceapse of the curves with L=100, 400, and 900, respectively, occurs
height level in the generalized survival probability problemwhen usingz=2.03.

introduces an additional length scale, that is related to the

steady state value of the interface width, L&. Indeed, in This numerical analysis allows us to conclude that the
panel (c) we look at three different systems with=200, scaling form of the generalized survival probability is

400, and 900, respectively, and the generalized survival

curves are calculated f&®=1, 2 and 3, respectively, i.e., the S(t,L,R, &) = f(t/L% RILY, /LD, (3
level R is varied proportionally td_%, with «=1/2 asappro-

priate for the EW equation. In addition, the sampling time forwhere the functionf(x,y,z) decays exponentially for large
each of these three cases is also var#a,L? (z=2), so we  values ofx. The rate of this decay decreases rather rapidly as
have consideredt=1 for L=100, 8t=16 for L=400, and Y is decreased and increases rather slowly &sdecreased.
8t=81 for L=900, respectively. A perfect collapse of the Note that fory=0 we recover the scaling form of the usual
curves St,R) vs t/L* occurs when usingz=2.03, which  survival probability withR=0 [5].

agrees with the expected valze2, characteristic for the To conclude, we have shown that the generalized survival
EW dynamics. probability of equilibrium step fluctuations on vicinal sur-

+ L=100, §t=1,R=1
« L=400, §t=16, R=2
o L=900, §t=81, R=3

S(t,R)
Ty
11 IIIIII|
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faces with Edwards-Wilkinson dynamics decays exponenelass, is to establish the generalized survival probability as
tially at long times. We have investigated the associated geran important statistical concept in studying thermally fluctu-
eralized survival time scale that depends on the system sizgting interfaces.

L, sampling timest, and the choice of the reference lewl Finally, we mention that the generalized survival prob-
In particular, the dependence efR) on R, which based on  apility could be experimentally measured using dynamical
our preliminary investigations seems to have an exponentiaTM step fluctuations data, opening the possibility for a di-
trend, should be useful in understanding the stability of therrect approach to the crucial issue of interfacial stability. Our
mally fluctuating interfaces. We have also shown that th&neoretical considerations f&t,R) should also be useful in
generalized survival probability exhibits simple scaling as &nderstanding the dynamical evolution of other physical pro-

function ofL, &, andR. Our numerical results of(t,R) can  cegseg14] where first-passage statistics have proven to be a
be easily extended to fluctuating interfaces characterized byseful concept.

different dynamical evolutiongsuch as low-temperature step

edge diffusion limited kinetigsbelonging to different univer- The authors gratefully acknowledge discussions with E.D.
sality classes. Our goal here, using the example of the stéfiliams and C. Dasgupta. This work was partially sup-
fluctuations process characterized by the EW universalityported by NSF-DMR-MRSEC and US-ONR.
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